

1
©2009 Serlio Software Development Corporation

WORKING IN TEAMS WITH CASECOMPLETE® AND PURECM

Contents
Working in Teams with CaseComplete ... 2

Need an introduction to how version control works? .. 2

Exclusive Checkout .. 3

Multiple Checkout ... 3

Merge Conflicts ... 3

CaseComplete Files ... 5

Package Files ... 6

Structuring and Partitioning your Project ... 9

What’s Next? ... 9

Getting Started with CaseComplete and PureCM .. 10

Create a New Shared CaseComplete Project .. 10

Create a workspace for a shared project .. 12

Put an Existing Model under Version Control ... 13

Save a Package as a Separate File ... 16

See Checkout Status of Elements ... 18

Check Out for Updating .. 18

Check In Changes .. 19

Undo a Checkout ... 22

Working with the Glossary .. 23

Add Related Documents to Version Control ... 24

Update Version Control Settings for a Project .. 25

“CaseComplete” and the CaseComplete logo are registered trademarks of Serlio Software Development
Corporation. PureCM and the PureCM logo are trademarks of PureCM.com Ltd. All other trademarks are
the intellectual property of their respective holders. Use of any marks within this document that are not
the intellectual property of Serlio Software Development Corporation are employed as nominative fair
use under 15 U.S.C. § 1125(c)(2)(C).

2
©2009 Serlio Software Development Corporation

Working in Teams with CaseComplete
This guide will help you get started using CaseComplete 2009R2 in a team environment. This version of

CaseComplete integrates with version control systems to allow members of your team to coordinate

your CaseComplete work – even if you are in different parts of the world.

Need an introduction to how version control works?
If you are already familiar with version control systems, you can probably skip this section. If it’s been a

while since you’ve worked with one, or you never have, you may pick up a tip or two in this section.

The basic idea behind version control systems is to be able to have multiple people working on related

files in a manner that can prevent them from stepping on each other’s toes and to keep a running

history of changes made. Consider the following scenario:

Alice, Bob and Cindy are responsible for creating separate sections of a document. They have decided to

store the master copy of the document in a shared folder on their local area network, and have agreed

that they will copy that master copy to their local hard drive, make the changes and copy the changed

version back to the shared folder. The

newly copied version then becomes the

new master copy.

Unfortunately, they didn’t work out a

schedule for coordinating who would be

changing the master copy at any

particular time. All of them made a copy

right away and started working. Bob

finished first and copied his version back

to the shared folder. Cindy finished a few

minutes later and copied her version.

Later in the day Alice finished her work

and copied her version.

Since Alice was the last person to copy the

file, her version overwrites Bob and

Cindy’s version. Their work is lost, and

there is no way to get back those earlier versions created by Bob and Cindy (unless, of course, they’ve

saved a copy someplace safe).

Version control systems provide a means of coordinating changes so this kind of scenario doesn’t

happen. The version control system tracks each change made to a file in a coordinated manner so that

changes aren’t lost by overwriting. Since each set of changes is tracked, you can also use the version

system to go back to an earlier version of the file.

Version control systems maintain a database of project files in a “repository” and allow individual users

to make a copy of those project files in “working folders.” The repository is updated by the version

3
©2009 Serlio Software Development Corporation

control system; users work on the copies in their individual working folders and submit changes to the

version control system which in turn updates the repository. Throughout this document, the term

“repository” will refer to the central location where the version control system maintains project

information, and “working folder” will refer to the copies of project files that are modified by the

individual user.

There are two primary types of file control with a version control system: exclusive checkout and

multiple checkout. Each type of control has advantages and drawbacks.

Exclusive Checkout

Exclusive checkouts control changes to the file by restricting the ability to update a file to one person at

a time. To make a change to a file, the file must first be “checked out.” This locks the file, and no one

else can check out the file while it remains locked. When changes to the file are complete, the file is

checked back in and the lock is removed. The changed version then becomes the “current” version. The

next person to check out the file will get that latest version and will have exclusive rights to update the

file until the lock is removed. Note that a checkout can be canceled – in that case the file remains

unchanged and the lock is removed.

The advantage to exclusive locks is that updates to the file happen one-at-a-time, and it is relatively

straight forward to coordinate those sequential changes. The disadvantage is that only one person can

make changes to a single file at a time. Two people can’t be working on the same file simultaneously.

Multiple Checkout

Multiple checkout addresses that problem by using a different approach. Instead of using a lock-update-

unlock approach where access is limited to one person at a time, this approach permits more than one

person to make a copy of the file, make changes and then merge those changes with the then-current

version to create a new version.

In order for multiple checkout to work, the version control system needs to be able to figure out what

has changed between the current version of a file and the version that you started with and the one

containing the changes you’ve made. Version control systems use a differencing algorithm to find what

has been changed, and what changes need to be applied to make the original identical to the new

version (and vice versa, so the previous version can be recovered once the new version is committed).

Differencing algorithms have their limitations though. First, they really only work well with text files.

Binary files – for example, an image – just don’t lend themselves well to differencing in the context of a

change management system. Secondly, they can’t always figure out the right thing to do when sets of

changes could result in more than one outcome. That particular circumstance is called a “merge

conflict.”

Merge Conflicts

Merge conflict happens when a set of changes could have more than one result, and the version control

system has to ask a human being for help to sort things out. Here’s an example of a merge conflict:

Cindy creates a text document containing a shopping list of office supplies:

4
©2009 Serlio Software Development Corporation

She commits that file to the version control system and asks Bob and Alice to review and edit the list.

Alice and Bob both get a copy of the list from Cindy’s version (let’s call that “version 1”). Bob makes a

change and commits that to the version control system. The version control system compares Bob’s

changed version against the version he started with (version 1). Since version 1 is still the most current

version, it’s easy to merge Bob’s changes in.

Not long after Bob commits his changes, Alice finishes her changes and tries to commit them. She

started with version 1, and has added two items to the list:

Before her changes can be committed, however, her working copy (which is based on version 1) needs

to be merged with the newest version (version 2). The version control system cannot reconcile the

changes because there is more than one possible result of the changes:

5
©2009 Serlio Software Development Corporation

The result is a merge conflict that has to be resolved by a human being who can figure out whether the

resulting version 3 should include or exclude “toner.”

Merge conflicts are important to understand if you are using an external version control system that

allows multiple checkouts. The files that CaseComplete reads and writes are a little more complicated

than plain text files. Those files contain information formatted as standard XML (eXtensible Markup

Language). If you permit multiple checkouts, you may encounter situations where your version control

system cannot reconcile a set of changes. In that case you will have to manually work with the XML data.

If you are not familiar with XML, it’s best to not permit multiple checkouts.

Note: If you are using CaseComplete’s version control addin that’s included with CaseComplete, you

don’t have to worry about merge conflicts. The CaseComplete Shared Project addin’s version control

uses an exclusive locking strategy so that all changes are made sequentially, and the CaseComplete files

are locked while they are being updated.

CaseComplete Files
Version control systems operate on files, so it’s important to know a little about the files that

CaseComplete uses. This will help you to effectively structure your CaseComplete projects and optimize

the way your team works.

CaseComplete creates several different files as you work with it.

<project>.ucd main project file

<project>.ucc Stores tracked changes

<project>_glossary.ucg glossary file

<project>.ucd.autosave autosave file, automatically backs up your work
periodically

<diagramname>.ndx diagram file

<packagename>.ucp package file

6
©2009 Serlio Software Development Corporation

<projectname>.settings Settings file

<diagramname>.ndx.autosave autosave diagram file, automatically backs up your
diagrams periodically

The project file, package files, glossary files and diagram files all contain project information that needs

to be shared with other people working on the project. In order for those files to be shared,

CaseComplete needs those files to be managed under version control. The autosave and settings files,

on the other hand, don’t contain shared project information – they are specific to you and aren’t version

controlled.

Note: CaseComplete allows you to separately control (check out, check in and track versions) of the

following kinds of project elements:

• Packages

• Glossaries

• Diagrams

• Change tracking files

Package Files

By default, all of the use cases, actors and requirements you create in CaseComplete are stored in the

main project file (the <project>.ucd file). If you are the only person working on a CaseComplete project

at any given time, that doesn’t present any particular problems. You can check out the file to lock it,

make updates, and check it back in when you’re done. However, if your version control system is using

exclusive locking (for example, the CaseComplete Shared Project addin), no one else can make changes

to that project while it is checked out – everything is in a single file. The answer is to partition your

CaseComplete project into separate package files.

CaseComplete allows you to logically partition your work into separate packages. Packages are like

folders that allow you to organize the things in your project. For example, you may want to organize

your project so requirements and use cases are segregated by the area of business concern.

Each package is initially created in the same file as the

main project. You can, however, save a package (and

its contents) as a separate file. By creating specific

packages in separate files, those parts of your project

can be checked out and modified separately from the

main model file.

7
©2009 Serlio Software Development Corporation

For example, suppose that a project contains three use cases. All three use cases are stored in the main

project file.

In an exclusive locking environment, the project file

has to be checked out before a change to any of the

use cases can be made. If more than one person needs

to work on the project at the same time, start by

thinking about how responsibilities for updating the

project are going to divided amongst the team

members. In the simple case above, the division of

work is likely to be based on people, facilities and

products. Start by creating a separate package for

each of those three areas. Then organize your model by creating or moving the use cases, actors and

requirements that are relevant to each of those areas into its respective package:

This logically breaks the model into three areas of interest. The information for each package is still

stored in the main project file, though.

If each of these three primary packages is made into a separate file, then each one can be separately

checked out without locking up the other packages. The main project file still ties all of the packages

together with references, but the information for each of these packages is stored in a separate file:

8
©2009 Serlio Software Development Corporation

To save a package in a separate file, simply right-mouse-click on the package you want to save, and

select “Save in separate file.”

9
©2009 Serlio Software Development Corporation

You’ll be prompted to provide a filename for that package file, and optionally add an identifier prefix for

the elements in the package:

After you have successfully saved the package as a separate file, the icon in the model explorer for that

package will have a decoration indicating that it is maintained in a separate file.

Structuring and Partitioning your Project

Deciding how to structure your project into packages will take some thought. Start by thinking about

how the requirements responsibilities will be divided and how the logical areas of interest are divided.

You probably won’t want to structure things solely around work breakdown – having packages named

for each of your team members might make sense in the short term but will quickly lose coherence over

time. Instead, use the areas of responsibility and interest to guide your structure.

Be careful about the granularity of your project structure. If you don’t partition the project sufficiently,

your team members will be contending for checkouts. On the other hand, not every package needs to

be stored in a separate file and version controlled separately. Too many “moving parts” can make things

overly complex. Fortunately, CaseComplete makes it easy to refactor your project and to move things

around to tailor the project to your team’s needs.

What’s Next?
The remaining sections of this guide provide guidance to start working in teams with CaseComplete.

10
©2009 Serlio Software Development Corporation

Getting Started with CaseComplete and PureCM
CaseComplete allows you to use PureCM for managing your CaseComplete projects. Using this option,

CaseComplete will manage check out, check in and versioning through PureCM.

Note: If you happen to have more than one MSSCCI-compatible SCM system installed on your computer,

please realize that only one can be registered as your MSSCCI provider at a time. Refer to your vendor’s

documentation if you will need to switch out providers. If you only have one SCM installed on your

computer, CaseComplete will automatically recognize it.

Create a New Shared CaseComplete Project

In order to create a shared project, you’ll first need to identify or create a PureCM repository, then

create a workspace for a stream in that repository. Use the PureCM client to perform these steps.

Depending on security policies and your privileges in PureCM, you may need to have an administrator

perform these tasks.

Start CaseComplete. Select New Shared Project from the File menu:

Next, select “Share This Project” from the CaseComplete File menu. CaseComplete will ask you which

version control system to use. Select “Use my installed version control system”:

11
©2009 Serlio Software Development Corporation

A PureCM dialog will display and allow you to confirm the stream and workspace associated with this

project. Click Ok.

Note: You must select a local directory that is a workspace created with PureCM

Next, PureCM will confirm your submission and allow you to annotate the checkin with comments:

12
©2009 Serlio Software Development Corporation

Click Submit. The project can now be checked out and modified by others who have workspaces for this

stream.

Create a workspace for a shared project

Once you have created a shared project, other team members will want to access that shared project.

Alternatively, if someone else has created a shared project, you will need to create a working copy of

that project in order to review and update it.

Before you can start working on a shared project, you must create a workspace for that stream. Use the

PureCM client to create a new workspace:

13
©2009 Serlio Software Development Corporation

Once the workspace has been created, open the project from the newly created workspace by choosing

File / Open from the CaseComplete menu. CaseComplete will open the project, and you can check out

and modify it.

Note – once you have created a workspace to work on a shared project, you don’t need to do these

steps again – simply open the project from your workspace. CaseComplete will recognize it as a shared

project and you’ll be able to check out, update and check in project files.

Put an Existing Model under Version Control

If you have been working with earlier versions of CaseComplete, you probably have existing

CaseComplete projects that you want to convert into sharable projects.

If you do not already have a workspace for the stream you want to use, create the workspace using the

PureCM client.

Next, open the CaseComplete project using the Open option on the CaseComplete File menu:

14
©2009 Serlio Software Development Corporation

Once the model is open, select File / Save As. Choose your workspace folder as the target folder and

click Save.

Next, select “Share This Project” from the CaseComplete File menu. CaseComplete will ask you which

version control system to use. Select “Use my installed version control system”:

A PureCM dialog will display and allow you to confirm the stream and workspace associated with this

project. Click Ok.

15
©2009 Serlio Software Development Corporation

Next, PureCM will confirm your submission and allow you to annotate the checkin with comments:

16
©2009 Serlio Software Development Corporation

Click Submit. The project can now be checked out and modified by others who have workspaces for this

stream.

Note: Related documents referenced from a project created with an earlier version of CaseComplete are

not automatically version controlled when you are starting with a project. To add those to version

control, see “Add Related Documents To Version Control,” below.

Save a Package as a Separate File

CaseComplete projects are created as a single file. As your project grows, you may want to break apart

your project into packages so that those individual parts of your project can be checked out, modified

and checked in independently.

Note: for more information on CaseComplete files, please refer to the section titled “CaseComplete

Files” above.

To save a package in a shared project as a separate file, simply right-mouse click the package in the

project explorer. Select the “Save in Separate File (Enable checkouts)…” menu item.

17
©2009 Serlio Software Development Corporation

CaseComplete will prompt you for a file name. Simply enter in the name of the file:

You can also specify a starting identification number and prefix for the elements that will reside in this

package. This ensures that all identifiers are unique across your project (for example, you don’t want to

have two use cases with the id UC-1 in the same model, so the owning package can provide a unique

qualifier for the package elements).

Click OK. CaseComplete will put the newly created file under version control. You can make

modifications to the package, save and check in.

Note: Be sure to check in the new package and the owning package(s) at the same time, since other

users won’t be able to see the newly created package file without the reference to it that is created in

the parent package(s).

18
©2009 Serlio Software Development Corporation

See Checkout Status of Elements

The CaseComplete project browser updates the icons displayed to indicate the status of packages and

diagrams.

Symbol Meaning Description

Checked In When something is checked in and available for checkout, CaseComplete displays

it with a lock. This indicates that it cannot be updated until it is checked out.

Checked Out When something is checked out to you, CaseComplete displays it with a green

check. This indicates that it is checked out to you, and you can make changes. No
one else can check it out while you have it checked out.

Locked When something is checked out to someone else, CaseComplete displays itwith a

human figure with a red checkmark. This indicates that it cannot be checked out
now.

New When you have added something new that hasn’t been checked in yet,

CaseComplete displays it adorned with a page with blue plus sign.

Out of date Someone may have changed something and checked it in since the last time you

got the latest versions. CaseComplete indicates that by showing the icon adorned
with a yellow “caution” triangle.

Check Out for Updating

Before you can make changes to a diagram or the contents of a package, it needs to be “checked out” so

that it is locked from updates by other users. To check out a package or diagram, right-mouse click on it

in the project browser and select Check Out.

19
©2009 Serlio Software Development Corporation

If the checkout is successful, its icon in the project explorer will be updated and will indicate its checked-

out status with a green checkmark:

CaseComplete will display a message to let you know if a project element is already checked out by

someone else. The message includes the user id of the person who has it checked out so you can

coordinate changes with that person.

Check In Changes

Once you have checked out something, you can then make changes to it. When you are done with the

changes and are ready to commit your changes, right-mouse click the package and select “Check in”

from the context menu:

20
©2009 Serlio Software Development Corporation

When you select the Check In menu item, CaseComplete displays a dialog that displays what you are

checking in, and allows you to enter comments to document the purpose of the change. Enter your

comments and click the “Check In” button.

21
©2009 Serlio Software Development Corporation

The PureCM Submit Changeset window will show your checkin. Click Submit:

After your changes have been checked in, the project explorer updates the element’s icon indicating

that it is checked in.

You can also check in several packages and/or diagrams at the same time. Click the Pending Checkins

button on the toolbar:

CaseComplete displays a dialog that displays what is checked out. Select the things that you want to

check in, and enter comments to document the purpose of the change.

22
©2009 Serlio Software Development Corporation

After your changes have been checked in, the project browser updates and displays the checked-in

items with a lock icon.

Undo a Checkout

You may decide that the changes you are making are not necessary and want to abandon them.

Undoing a checkout will release the checkout and refresh your working project with the most current

version that has been checked in. To undo a checkout, right-mouse click the item that is checked out,

and select Undo Checkout.

23
©2009 Serlio Software Development Corporation

After the undo has been performed, your project will be updated with the most recent version and the

icon for that item will be updated to reflect its current status.

Working with the Glossary

The glossary for a CaseComplete project is stored as a separate file, and is controlled much like a

package or diagram. The concepts of checking out, changing and checking in the glossary are just like

other project elements. Because you work with a glossary in a different way than you might a package

or diagram, though, the steps are a little different.

The status of the glossary is displayed at the top of the Glossary tab. It will indicate “checked in” if it is

available for checkout, or will indicate to whom it is checked out otherwise:

To check out the glossary, go to the Glossary Tab and click the Check Out button:

Once you have checked out the glossary, the Check Out button is replaced by a Check In button. To

check in your changes, simply click the Check In button:

24
©2009 Serlio Software Development Corporation

The PureCM Submit Changeset window will confirm your checkin.

Options to undo your checkout, look at the glossary version history and get the latest version are

available from the Other Sharing Actions dropdown in the Glossary tab:

Add Related Documents to Version Control

Documents that are related to your use cases, actors and requirements can also be version controlled

with CaseComplete. When you add a related document, CaseComplete will check to see where the

document is located. If it is located outside of your project folder, CaseComplete will ask if you want the

document to be moved into your project folder so it can be version controlled:

25
©2009 Serlio Software Development Corporation

The document will display in the tab pane with the icon indicating the “new” checkin status. Check it in

by right-mouse clicking on the document and selecting “Check In” from the context menu:

Once the document has been checked in, other version control commands are available from the same

context menu:

Update Version Control Settings for a Project

There may be occasions where you will need to change the version control bindings for a project:

 You no longer want to share the project

 You have a project under version control from an earlier version of CaseComplete

26
©2009 Serlio Software Development Corporation

For this example, to change the version control settings, click “Change Sharing Settings…” from the File

menu.

CaseComplete prompts you to choose the new setting for this project. To remove the project from

version control, select “None.” Click Ok to confirm the changed setting.

Note: This action only changes CaseComplete’s project binding for version control. It will not remove the

files from version control.

